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constants, we have

a~, afyl ‘
—=—
aj,, a~tt

=T~=fI=f (14)

where Z is the identity matrix. Similarly

a%n
__=~-l.

ax,,
(15)

If we define & = [~P~ ]. = &~- 1, the operation ~~ in (13) is

nothing more than the Fourier transform of & and the NFFT

can be used to efficiently accomplish the transform. We note that

a single column, &~, of the two-dimensional matrix ~~ is of the

same size as the data vector $.. So the premultiplication of $~, ~

by ~ in (13) corresponds exactly to the operation in (3), and the

same transform and data structure used for the circuit variables

can be used in determining the frequency-domain derivatives.

Thus (13) is accomplished for the m th frequency of X. by use of

the transform operator

(16)

where 8 Y. /6’ XM,. is an N-dimensional matrix from which the

elements of the Jacobian can be extracted. Again, the matrix ~m, ~

(and thus 8 ~ /8Xm, ~) is the same size as the data matrices x.,

X., y., and Y..

When Newton’s method is accomplished using strictly real

quantities, the following four quantities must be computed:

RR.
8Re(~, )

J,,,,,, =
~Re(Lt,,)

RI.
dRe(~,)

‘“’’” = 81m(x~, fl)

IR. _
dIm(~)

‘m’”- 8Re(X~,,l)

11.
i31m(~)

‘n’””= 6’1m(X~, H)

(17)

(18)

(19)

(20)

but the procedure (16) produces the quantity

“(R1j~,n +’~m,n) (21)‘( flirt,,,) ‘R!ifn,,z ‘bin, n ‘J

and the individual components cannot be recovered. We form

‘/?~,,, = Re(@~,,,) and ‘~~,,, = Im(@~,H) as

$m,,, =g.Re(Kl) (22)

and

lm,,, =g,l Im(Kl). (23)

Then following (16) we get

s(RBm,,,) =RY +l!im ??m,n (24)

&(l/3~,,,) =R}~,,, + jl~~,H (25)

from which the needed derivatives are available.

V. DISCUSSION AND CONCLUSION

Equations (24) and (25) can be efficiently implemented in a

circuit simulator since no matrix multiplications are required.

The operations in (22) and (23) are scalar multiplications. This

results from the fact that the nonlinear constitutive relations are

algebraic (f,, = 8J,I /6’?,, is a diagonal two-dimensional matrix).

The y;; are constants and need be computed only once per

simulation. However, the values of g. are dependent on the

nonlinear constitutive relations and SCJthey change from iteration

to iteration. For each iteration they are computed once and are

then used in determining Al the &, ~ in ~~. The major operation

is the multidimensional Fourier transform, which is performed

once at each frequency of X,,.

The method presented for evaluating the Jacobian permits the

use of the efficient NFFT algorithm in conjunction with Newton’s

method for the harmonic balance analysis of nonlinear analog

circuits. This procedure has been implemented in FREDA, a

general nonlinear circuit simulator. The MESFET amplifier cir-

cuit of Chang et al. [4] was driven by two incommensurate input

signals, one at O dBm and the other at 5 dBm, and simulated

using 14 analysis frequencies. The time-domain element response

was oversampled [5] so that the transform cent ained 26 frequen-

cies. The solution was obtained in 1.1 s after 11 iterations using a

modified S“aanskii method on a DEC DS 3100 workstation. The

equivalent simulation using a matrix multiplication based trans-

form (APDFT) required 3.8 s.
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Harmonic Balance and Frequency-Domain Simulation

of Nonlinear Microwave Circuits Using

the Block Newton Method

CHAO-REN CHANG, PATRICK L. HERON,

AND MICHAEL B. STEER, MEMBER,IEEE

AfHtract —An efficient afgonthm using block Newton and chord meth-

ods is presented for the iterative minimization of the spectral balance error

in the analysis of nonlinear microwave circuits. This algorithm is used in

the harmonic balance and frequency-domain, spectral balance simulation of

a MESFET amplifier with single-tone and lwo-tone excitation.

1. INTRODUCTION

Methods of nonlinear microwave analog circuit analysis cau be

classified by the nature of the linear and nonlinear subcircuit

calculations: time-domain methods, where all elements are ana-
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lyzed in the time

partitioned mto a linear subcmcmt and a nonlinear

element

domain; frequency-domain methods, where all

elements are analyzed in the frequency domain; and hybrid

methods, including the harmonic balance methods, which com-

bine time-domain and frequency-domain anaIyses.

Most time-domam nonlinear circuit simulation methods are

not suited to microwave applications [1]. Consequently the har-

monic balance (HB) technique, which interfaces the frequency-

domain analysis of the linear part of a circuit with the conven-

tional time-domain analysis of the nonlinear part of a circuit, is

increasingly being used. A significant amount of research in this

field has been published [2]- [10], and the HB method is becom-

ing a preferred nonlinear microwave circuit CAD technique.

However, one of the disadvantages of HB methods is the aliasing

problem [11]. Because of the errors introduced by aliasing, over-

sampling in the Fourier transform and inverse Fourier transform

operations is often used in HB methods at the cost of increased

run time.

Alternative techniques using a frequency-domain spectral bal-

ance method (FDSB) are based on power-series descriptions of

nonlinear elements [12]– [17]. Without explicit time-domain calcu-

lations, FDSB methods avoid the aliasing problem and can often

obtain higher accuracies than HB methods for the same set of

analysis frequencies. However, the necessity of having a power-

series description of the nonlinear elements instead of an arbi-

trary current–voltage relationship is the major disadvantage of

most FDSB methods.

The purpose of the work reported here is to introduce a

minimization algorithm which combines a block Newton itera-

tion scheme with the Shamanskii method [12], [18] and then to

present numerical results for HB and FDSB analyses using this

technique. Comparisons of memory use and computer time are

presented in detail. In particular, we consider the almost periodic

discrete Fourier transform (APDFT) HB method [4], [9] with the

dual frequency set (oversampling) algorithm [11] and the general-

ized power-series analysis using the arithmetic operator method

(GPSA-AOM) [12]—an FDSB technique. A MESFET model

[12] in which the nonlinear elements have power-series descrip-

tions is used, since it can be simulated with both HB and

GPSA-AOM.

II. ANALYSIS OF THE NONLINEAR SYSTEM

The basic approach used to solve a system of nonlinear circuit

equations is first to formulate an error function and then to use

function-minimization algorithms such as the Newton iteration

scheme. The classical approach to formulating the error function

is to partition the circuit into linear and nonlinear subcircuits

and, following separate analyses of the subcircuits, determine the

steady state “balance” point of the system. For example, in Fig.

1, 1, u and i’, u’ are the current and voltage of the linear

subcircuit and the nonlinear element, respectively. With Ik, Vk

and Ii, Vi representing the phasor forms of i, u and i‘, v’ at a

particular radian frequency ti~, and with K + 1 different fre-

quency components, the current at ok in a nonlinear admittance

is a function of all voltage components Vi (k = – K,. . . .

0,. ... K) across the element:

I(=f(v:K,. ... v~, v;), v;), VA = q,’. (1)

The voltage of u,, in a nonlinear impedance is a function of all

current components I; (k = – K,. ..,0,. ... K) in the element:

v(=g(ILK,. ... I,l~. ), ~-), Ik=–l[:. (2)

The difference between the hybrid methods and the frequency-

domain methods is that the functions ~(.x) and g(x) are deter-

mined in the time domain or in the frequency domain, respec-

tively.

To handle both impedance and admittance nonlinearities, both

of Kirchhoff’s laws must be satisfied. That is, the zero of the

obiective function

k=O k=o

must be found. In general, if we have L different nodes between

the two subcircuits and M different nonlinear impedance type

elements in the nonlinear subcircuit, the system objective will be

Although it can be time consuming, the Newton method is

frequently used in nonlinear circuit analysis to minimize E.

Let x represent the variable vector which is composed of all

the required real and imaginary parts of the phasors of the node

voltages and branch currents at K + 1 different frequencies;

variable Xk represents the component of x at frequency ok;

vector ,f(x) represents the error function and is composed of all

the correspon&ng <, ~, k + I; ~, ~ and ~, ~,k – ~;~, ~;- and fk(x)
represents the component of ~(x) having frequency tik. In the

Newton method, the obiective function E is minimized with

respect to x using the iterative procedure

,+1
X= ’x- J-’(’x) f(x) (3)

where the leading superscripts are iteration numbers and the

matrix J is the Jacobian matrix. For increased program effi-

ciency, a modified Newton method [19] (block Newton method)

can also be used. That is, K + 1 separate iterative procedures

‘+lXL =’XA –J-l(’x)f< (’x), k= O,l,..., K (4)

can be solved simultaneously. In this case, the matrix inverse

calculation time is approximately ( K + 1)”times faster than the

time needed in the full Jacobian form of the Newton method,

where the typical value of a is generally between 0.5 and 2 and is

determined by the matrix inversion algorithm [20]. Further in-

creases in efficiency can be obtained by using the chord method

which uses the previously computed J– 1 (or ~,- 1) for the present

iteration regardless of the method used in the previous iteration.

III. COMPARISONS AND DISCUSSION

The device used for the comparisons is the medium-power

GaAs MESFET (Avantek AT8250) which was previously used in

[12], where the equivalent circuit and parameter values are given.

One property we compare here is the accuracy of each simula-

tion method as a function of the number of frequency compo-

nents considered. The first example is the class-A MESFET

amplifier with a 10 dBm single-tone input (this corresponds to

3.6 dB gain compression) at 3 GHz. Fig. 2 shows the simulated

output power at the second-harmonic frequency, in which curve

a is for the GPSA–AOM and curve b is for the APDFT HB

method. Curves a and b in Fig. 2 show a significant difference

between these two techniques. The simulated result of curve b,

for the APDFT HB method, is not stable until the number of

analysis frequencies is 15.
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Fig. 2 Comparison of the smulated output power versus the number of

analysis frequencies at the second harmonic frequency for the MESFET

amplifier uithsingle-tone input excitation. a: GPSA–AOM; b: APDFTHB

method: c. dual-frequency-set APDFT HB method

The APDFT HB method involves the forward and backward

Fourier transforms to convert the signals between time- and

frequency-domain representations. Insufficient sampling of the

signals in either the time or the frequency domain introduces

aliasing. Because the sampling rate is directly related to the

number of frequencies considered in the analysis, a larger num-

ber of analysis frequencies yields greater accuracy for the APDFT

technique. This is not only because of reduced aliasing effects,

but also because the broader spectrum better represents the

signal. With GPSA–AOM, a larger frequency spectrum also

better represents circuit voltages and currents. With both tech-

niques, simulation with fewer frequencies generally results in

higher errors but the growth in error for the APDFT HB method

is greater than that for GPSA–AOM.

in order to incorporate a sufficient number of frequencies to

avoid aliasing during the Fourier transforms and also to decrease

the number of frequencies in the frequency-domain calculations,

the dual frequency set algorithm (oversampling in the nonlinear

analysis) for harmonic balance methods [11] was used. Curve c in

Fig. 2 shows the simulated result using the APDFT, where the

number of frequencies in the Fourier transforms is kept at 15. If

we assume that the acceptable maximum error limit is 0.1 dB,

then from curves a and c in Fig. 2 the GPSA-AOM requires

eight analysis frequencies to converge the output power level of

the second harmonic to the acceptable limit whereas the im-

proved APDFT method requires seven frequencies.

A more detailed comparison of the computer run times and

memory requirements for this example is made in Fig. 3 under

the following conditions: eight analysis frequencies are used in

the GPSA–AOM and seven analysis frequencies with 15 trans-

form frequencies in the dual frequency set APDFT HB method.

In Fig. 3, the solid line is for the GPSA–AOM and the dashed

line is for the dual frequency set APDFT HB method. The

simulations were performed on a DEC DS31OO workstation

(rated at 13 VAX 11/780 MIPS). The process executed in each

time segment in Fig. 3 is listed in Table I. In this example, both

techniques have similar computer run time and memory require-

ment to achieve the same accuracy. Both techniques consume

most of their CPU time in the nonlinear analyses; only a small

part (less than 0.1 s) is required to formulate and to reduce the

modified nodal admittance matrices of the linear subcircuit. Both

methods took one block Newton iteration and 31 chord iterations

to converge the system error to the specified limit. The full-

%o~l I I!lu
00 040 080 1.2 1,6 2.0

ANALYSIS TIME (sees)

Fig. 3. Comparison of simulation run time and the maximum memay re-

qturement for the MESFET amplifier with single-tone input excitation The

solid line M for the GPSA–AOM and the dashed hne is for the dual-

frequency-set APDFT HB method. The regions designated are lisl ed in

Table I Computer run time N for a DEC DS3 100 workstation.

TABLE I
THE PROCESSESEXECUTEDIN EACH Tmm SEGMENTOF FIGS. 3 AND 5

Region Processes

GPSA-AOM

Linear subcircuit calculations

2 1’ II includingmatrix formdaticms

dL.lesf.rt..-t...t.st) _

inclnding system error evaluations

(31 cycles for single-tone test,

Jacobian Newton method is not required in this case and the

time required for the inversion of the block Jacobian matrix is

insignificant.

The second example is an analysis of the same amplifier having

two-tone excitation [12]. One ac source is the local oscillator (LO)

at 2.4 GHz and O dBm input power, The other source is the RF

signal at 2.35 GHz and – 10 dBm input power. The 50 MHz IF

signal is detected. Fig. 4 shows the sl.mulated IF output power as

a function of the intermodulation order. As before, there is

aliasing error and the conventional APDFT HB method con-

verges to the correct result at the fifth intermodulation order (see

curve b). Again the dual-frequency set algorithm improves this

situation. With fifth-order intermod ulation in the Fourier trans-

forms and various intermodulatiou orders in the frequency-

domain analysis, the simulated results of the dual-frequency-set

APDFT HB methods are shown iis curve c. Fig. 5 presents

detailed comparisons between these two techniques using analy-

sis frequencies corresponding to second-order intermodulation

(six ac and one de). Frequencies corresponding to fifth-order

intermodulation (30 ac and one dc) were used for the Fourier

transforms in the APDFT. The process executed in each time

segment is listed in Table I. In this cwe the GPSA–AOM is more

efficient than the dual-frequency-set APDFT HB method. Since

the intermodulation order for the transform frequencies is set at

5, the dual-frequency-set APDFT HIB method spends much of its

time in the transform matrix formulation, system-error evalua-

tions, and the gradient calculation. The nonlinear analysis in the

GPSA–AOM is about ten times fastm than the dual-frequency-set

APDFT HB method in this example. These results are typical of

those we have obtained with other two-tone excitation problems.
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F1g 4, Comparison of the simulated IF (50 MHz) output power versus the

mtermodulatlrm order for the MESFET amphfler with two-tone input

excitation. a CJPSA– AOM; b: APDFT HB method; c: dual-frequency-set

APDFTHB method
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Fig. 5 Compansmr of simulation run time and the maximum memory re.

qmrernent for the MESFET amplifler with two-tone input excitation. The

solid lme IS for the GPSA-AOM and the dashed Ime is for the dual-

frequency-set APDFT HB method The regions designated are lrsted in

Table I Computer run time M for a DEC DS31OO workstation

IV. CONCLUSION

This paper presented a common error minimization algorithm

for performing both the harmonic balance and the frequency-

domain spectral balance analysis of nonlinear analog circuits.

Simulations of a MESFET amplifier having one- and two-tone

excitations were used to compare the performances of the

GPSA–AOM and APDFT harmonic balance techniques. In gen-

eral, based on the same accuracy consideration, the performance

of the APDFT harmonic balance method is comparable to the

GPSA-AOM with single-tone input excitation. The GPSA-AOM

tends to dominate in circuits with two or more incommensurable

signals. However, from the device-modeling viewpoint, most

FDSB methods are limited to power-series-based models and

thus have less utility than harmonic balance methods which use

nonlinear models described by arbitrary functional relations.
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A New Resistance Measurement Technique Applicable

to High-Temperature Superconducting Materials

at Microwave Frequencies

MICHAEL K. SKREHOT AND KAI CHANG. SENIORMEMBER.IEEE

Abstract — A two-gap electrically floating resonant strip is used for

surface resistance measurements of the bigh-temperatare superconductor

YBa2Cu ~07 _~. The method used is simple, has no electrical contact,

operates at various resonant frequencies, and requires only a small sample.

An analysis was used that allows for the accurate design of the strip

dimensions to produce a desired resonant frequency. Experimental mea-

surements on resonant frequencies in X- and Ku-bands (8– 18 GHz ) agree

well with the calculations. The method allows one to extract the normalized
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